MATLAB CODES - Min Filter , Noisy Image , Wiener Filter , Gaussian PSF , Motion PSF , Gausian Blurred Image , Blind Deconvolution (Random),


% read the Test image and display it

  mygrayimg=imread('grayleaf.jpg');
  mygrayimg=imresize(mygrayimg,[256 256]);
  subplot(3,3,1),imshow(mygrayimg), title('Original image');


% Create an Order filter - Min filter with 3 x 3 mask
% The command ordfilt2() is used

  filt1 = ordfilt2(mygrayimg,1,ones(3,3));
  subplot(3,3,2),imshow(filt1);
  title('Min Filter Result');

% Create Noisy Image

  noisyimg = imnoise(mygrayimg,'Salt & Pepper', 0.5);
  subplot(3,3,3),imshow(noisyimg);
  title('Noisy Image');

% Create Wiener filter with 5 x 5 mask
% Apply Wiener filter to the test image

  wienerimg = wiener2(noisyimg,[5,5]);
  subplot(3,3,4),imshow(wienerimg);
  title('Wiener filter with 5 X 5 mask');


% Create Gaussian blur
% The command fspecial() is used to create mask and imfilter() is used
% to apply it. The command edgetaper is used to blur the edges
% Display the blurred image

  gausspsf = fspecial('gaussian',[64,64],5);
  subplot(3,3,5),imshow(gausspsf,[]);
  title('Gaussian PSF');

% Create motion Blur
% The command fspecial() is used to create mask and imfilter() is used
% to apply it. The command edgetaper is used to blur the edges
% Display the blurred image

  motionpsf = fspecial('motion',64,64);
  subplot(3,3,6),imshow(motionpsf,[]);
  title('Motion PSF');
 
  gaussblur = imfilter(mygrayimg,gausspsf);
  y1 = edgetaper(mygrayimg,gausspsf);
  subplot(3,3,7), imshow(gaussblur);
  title('Gaussian Blurred Image');


  % The original image is retrieved from the blurred image using the
  % command blind deconvolution and display it

  randpsf =rand(64);
  retrievedimg1 = deconvblind(y1,randpsf);
  subplot(3,3,8),imshow(retrievedimg1);
  title('Blind deconvolution(random)');

  % The original image is retrieved from the blurred image using the
  % command blind deconvolution and display it

  retrievedimg2 = deconvblind(y1,gausspsf);
  subplot(3,3,9),imshow(retrievedimg2);
  title('Blind deconvolution');
MATLAB CODES - Min Filter , Noisy Image , Wiener Filter , Gaussian PSF , Motion PSF , Gausian Blurred Image , Blind Deconvolution (Random), MATLAB CODES - Min Filter , Noisy Image , Wiener Filter , Gaussian PSF , Motion PSF , Gausian Blurred Image , Blind Deconvolution (Random), Reviewed by Suresh Bojja on 9/11/2018 06:10:00 AM Rating: 5

Subjects & Labs

AC (6) ADS (2) ATMEL (6) AWP (5) C- Language (3) CAO (5) CDAC (1) Cloud Computing (1) CMC (6) CN (10) CONSERVATION & MANAGEMENT Complete Notes (1) Control Sys (2) CVSM (2) Data Analytics (1) DC (5) Digital System Design (3) DIP (17) DLD (10) DLD Lab Manual (1) DS (4) DSD&DICA (9) DSP (6) EDC (45) Electonic Components (2) Embedded (7) EMWTL (6) ENERGY AUDIT (1) Engg. Mechanics (2) Engg.Chemistry (11) Faculty Files (6) Faculty Labs (1) Fuzzy (3) II MID (1) Job Exam Papers (4) LICA (1) Linux OS (1) Materials (1) MATLAB (27) MCU IDE 8051 (1) MEMS (4) MPMC (57) MPMC LAB Manual (3) MTECH (6) MWE (2) OC (1) PDC (9) Projects (8) RADAR (1) Research (9) RVSP (3) SC (1) Softwares (1) SS (1) STLD (18) TCSS (1) TSSN (1) TV Engg (1) VHDL (4) VLSI (8) VLSI Lab manual (1) WCN (1) Wireless Commu. (1) WSN (2)

Contact Form :

Name

Email *

Message *

Theme images by enjoynz. Powered by Blogger.